The First Flight of the GSLV Mk-III

As I write this, the GSLV Mk-III would have commenced its 25.5 hour countdown to launch at 1728 hrs (IST) on June 5, 2017. The 3-stage GSLV Mk-III will carry the 3136 kg GSAT-19 to a geostationary orbit. The satellite carries transponders for communication, a scientific instrument to study the nature of charged particles and effect of space radiation on satellites and among various other technologies an indigenously built Lithium ion battery. This will be the launch vehicle’s debut flight and hence called D1.

GSLV Mk-III at the Second Launch Pad
I love the dawn/dusk time view of the launch vehicle. Image Credit: ISRO

The GSLV Mk-III flew last as GSLV Mk-III-X, an experimental flight where it flew with a passive third stage and the CARE payload. The sub-orbital flight was intended to study the launch vehicle configuration and went off successfully. It allowed ISRO to study how the launch vehicle performed in flight. The crew vehicle CARE splashed down in the Bay of Bengal near Andaman and Nicobar islands and was recovered by the Coast Guard.

The GSLV Mk-III is India’s medium lift launch vehicle capable of flying 4 tonnes to Geosynchronous Transfer Orbit and 8 tonnes to Low Earth Orbit. It is intended to place India’s heavier communication satellites in orbit. It has two S200 solid fuel boosters attached to a core stage. The core stage has two clustered L110 Vikas Engines. The third stage Cryogenic Upper Stage C25 is powered by the indigenously developed CE-20 engine. The payload fairing also has a “slanted strap-on nose cone for aerodynamic robustness” added to it after the X flight.

Notice the change in language. It is no longer called as first, second, third and fourth stages as in PSLV and the GSLV. The stages are called as booster, core and upper stage.

This will also be the time when the CE-20 will actually fire and take a payload to orbit. It is different from the cryogenic engine on the GSLV which is called CE-7.5. The GSLV Mk-III-X carried the CE-20 but it did not fire.

I had written about the commercial aspects of the GSLV launches in the Wire in 2015 and think that the same holds for the GSLV Mk-III as well. India has already begun developing satellites which require a launch capability more than that provided by the Mk III. An example is the soon to be launched GSAT-11. GSAT-11 weighs 5725 kg and is going to be launched on board the Ariane-5 in 2017-18 and uses the newly developed I-6K bus. This requires development of heavy lift (launch capability to GTO of more than 10 tonnes) launch vehicles. This development would be pursuant to lessons learnt in the development of the GSLV and the Mk-III.

GSAT-19 is largely a communication satellite. It holds improvements in satellite components such as heat pipe, gyros, accelerometers and an indigenous Lithium ion battery. There is very little information that I could find on GRASP (Geostationary Radiation Spectrometer) besides what it says about studying charged particles and impact of space radiation on satellites.

With so much to write about, I was not happy with the initial reportage in the Indian press looking at India’s human spaceflight program (example). I wish they would ask ISRO to share more information on the payload (the science payload as well improvement in space craft instrumentation) and the improvements in the launch vehicle that the GSLV Mk-III X flight enabled.

I wish ISRO and the GSLV Mk-III team all the best and Godspeed!

Review: ISRO Annual Report 2013-14

I saw the link to the 2013-14 Annual Report on the ISRO website thanks to the blinking “NEW” sign next to it. Usually, ISRO reports go over the top with missions that they tend to be working on and hoping to cover more ground than they realistically could. It usually had timelines that no one knew how they’d meet.

The 2013-14 Annual Report is different. It states the basic facts under each section and dwells very slightly on the future course of the missions under development. I am not really sure how I feel with this change especially since they did the unthinkable in putting together and launching the Mars Orbiter Mission in record time.

I have had things weighing on my mind this whole year. This meant that I have not been that on top of space developments as I have been in the past. The Report, put together as a sort of summary of what happened in the 2013-14 period that it covers, hence make lovely reading for me but really bland reading for people already in the loop. The Report is a long series of things which just goes like, “This happened, this happened, this happened, and you know what, this happened too!”

Without further ado, let’s go through this report now, shall we?

I like to begin with the Space Transportation Systems section and begin with the GSLV Mk-III project. This three stage vehicle is now prepping for a passive cryogenic stage flight carrying the Human Spaceflight Crew Module on top to test the design of the whole stack. ISRO has never done this before – flown a mission without a payload – since each launch cost so much. However, the string of failures that the GSLV Mk-I and Mk-II saw has slowed the approach they’re taking with the Mk-III or LVM3 as they refer to it internally and presentations they make. The passive cryogenic stage means that the cryogenic stage does not actually fire whilst the giant twin S-200 and the liquid L-110s will fire and take the vehicle up to a certain height and the engineers will get valuable data that can be used to improve the design and fix flaws in the aerodynamics. I really loved this picture of the CE-20 cryogenic engine that is at the heart of the third stage of the LVM3 in the Report undergoing a hot test.

CE-20-Thrust-Chamber-new

Image: The CE-20 cryogenic engine undergoing a hot test. Image Credit: ISRO. Image Source

Next, again in the Space Transportation Systems section is an eerie sounding title called “Pre-project Activities of the Human Spaceflight Programme”. The ISRO asked the Government for some money to put together the systems that would enable a human spaceflight programme. This section basically details on what happened under that head. The most interesting aspect for me in this are the Crew Module Atmospheric Re-entry Experiment (CARE) and information related to tests for the Crew Escape Systems. CARE is expected to be on top of the LVM3 experimental flight I talked about above. This is an important test because it gives us crucial indications as to what the Crew Module can handle during an atmospheric re-entry or to put it bluntly, if humans inside it can survive an atmospheric re-entry. I am not really in favour of mingling this along with LVM3-X and think ISRO is trying to do too many things at once.

5HSP-CMImage: The Crew Module undergoing a test. Image Credit: ISRO. Image Source

ISRO loves indecipherable précis. Pray, expand on this? “Functioning of newly developed Head-end Mounted Safe Arm (HMSA) for solid motors in Crew Escape System was successfully demonstrated.” The work with parachutes with tests conducted in Chandigarh and Agra is interesting and I wish ISRO shares more of these on its Facebook and Twitter sites. With pictures, please!

I really need to read up on this LVM3-X flight. I think I’ve not really understood it well. Under the GSLV Mk-III section, it does not make mention of the Crew Module flight during the LVM3-X flight whereas the section above does. Hmm!

If you wander to the Space Sciences and Planetary Research section, the section on the Mars Orbiter Mission piqued my interest but ended in disappointment. The section is a nice synopsis of what’s happened so far. No looking at the future. No mention of a future/planned Mars mission. The mission does deserve kudos for its achievement thus far and I think the section does not do it any justice. The section on Chandrayaan-II is more interesting. This is the section in which the marked toning down of ISRO’s Reports becomes most glaringly visible. Earlier reports were talking of Chandrayaan III or even IV by 2015. This Report only marks the parting of ways with Roscosmos and the tough job of developing a lunar lander that lies ahead of ISRO. It does not even offer a guess at the possible launch time-frame, though news reports have been pushing it further and further into the future. Pendulum swings! They’ve now got their launch vehicle – the GSLV Mk-II. They’re working on the orbiter and rover since they were working with Russia. The parting of ways on the project means that they had to rework the project with an Indian lander.

Chandrayaan 2 rover mobility test
Image: Chandrayaan-II Rover undergoing mobility test under reduced gravity conditions. Image Credit: ISRO. Image Source

The Audit Observation section also has an important paragraph on Edusat, India’s effort at tele-education. Whilst ISRO has been at pains to make this into a success, the CAG seems to report that the planning was bad and basically all the ground infrastructural network did not come up as expected. As the network developed, the satellite idled with no useful function. By the time the network on ground developed, the satellite seems to have given up waiting. I also think that similar criticism can be levelled at ISRO for its planetary projects to Mars and the Moon. Chandrayaan-II seems to be coming almost a decade after it’s predecessor launched and there is no mention of the next Mars mission at all.

Annual Reports usually make drab reading except for people who follow intently. Earlier, ISRO has gone overboard with planning and now seems to be extra shy thanks to all that it wasn’t able to achieve as promised. I think the Report needs to strike a healthy balance of information on the projects undertaken in the year and a glance at what’s coming in the future, especially if it is exciting.