Using Chandrayaan-I to find human habitability sites on the Moon

Note: I wrote this on my earlier blog hosted as I recovered the text from the WayBack Machine. This post appeared on February 24, 2011 as per the time stamp. I’m trying to collect here again all my old writings spread on various blogs.

The current edition of Current Science magazine has the paper by Arya et. all titled, “Detection of potential site for future human habitability on the Moon using Chandrayaan-1 data“. The result itself was reported way back in March, 2010. The paper provides more details and some interesting facets. The paper is based on work done by the Terrain Mapping Camera on board the Chandrayaan-I spacecraft.

The high spatial resolution of the Terrain Mapping Camera and the close 100 km orbit helped scientists build Digital Elevation Models (DEM) to help study the lunar terrain in great detail. This was used to study potential human habitability sites on the Moon. Based on previous studies, they concentrated their efforts on riles and lava tubes on the lunar surface. Study on the Oceanus Procellurum region on the Moon showed that lava tubes were good places for possible human habitability. They found that there was no effect of cosmic rays deeper than 6 meters, no effect of solar particles deeper than 1 meter, no radiation effects and no significant temperature difference was observed with the temperature remaining nearly constant at -20 degrees Celsius. It is also opined that the presence of partial lava tube structure reduces requirement of construction. Scientists also think that the cool temperatures here could make these a candidate for water and ice traps on the lunar surface. Lava tubes also provide a dust free environment.

Lava Tubes are interesting to study for reasons other than human habitability as well. To geologists, it provides a section of the lunar bedrock and top soil that would be difficult to access otherwise. It could also help geologists to study native lunar material which has not been affected by external factors like meteoric impacts, solar particles etc. It could also provide an understanding of the thermal profiles and volcanism on the Moon.

The paper now profiles the area of the Moon under study, Oceanus Procellurum using a picture of the Moon taken by the CARTOSAT-2A spacecraft from Earth orbit!

Using various techniques (explained in the paper) they find that the rough cylindrical tube which comprises the lava tube is 120 meters in diameter and 1.72 km in length. The thickness of the roof is 170 meters hence safe from various considerations discussed above (radiation, cosmic rays etc.). The Hyper Spectral Imager (HySI) was used to do chemical and mineralogical study. It was found that the surface was homogeneously basaltic rich in Iron and Titanium. The homogeneity of  the results was also used to predict that there was no lava flow after the lava tube was formed. To confirm the result, surface ages of the north and south section of the uncollapsed rille was done using the crater counting technique. Using this method ages of the northern section was found to be 3.47 Ga and the southern section was found to be 3.43 Ga. This more or less rules out “differential emplacements of the mare basalts”.

The authors of the paper state that using similar procedures, TMC and HySI data can be used to study different areas on the surface of the Moon.

Indian Team joins GLXP

Note: I wrote this on my earlier blog hosted as I recovered the text from the WayBack Machine. This post appeared on February 18, 2011 as per the time stamp. I’m trying to collect here again all my old writings spread on various blogs.

An Indian team, called Team Indus has joined the Google Lunar X Prize. They have not mentioned much about themselves biographically or provided contact information of any kind. Their about page says:

Team Indus seeks to represent the aspirations of one of the world’s oldest civilizations and youngest population. Headquartered in New Delhi, India we are a team of professionals from Technology, Science, Finance and Media background all of whom have made a habit of pushing boundaries.

Team Indus is a for-Profit organization and plans for GLXP to be the first step towards establishing a Global Innovation brand. We plan to reward all contributors to our team by ensuring long-term commercial interest. We are in the process of setting up a separate non-profit education foundation that will work towards creating a space education & awareness campaign in India. All donations made to Team Indus will be directly passed onto this foundation. All articles, media generated in our pursuit of GLXP will be assigned to this foundation.

We have a few out-of-the-box theories on each phase of the mission, going radical on technology was the obvious choice given the late entry. Our initial planning suggests we will take about 3years to prepare for a potential launch, the launch in all likelihood will be done from India. Team Indus plans to attempt the Endurance and Distance bonus prizes.

It is a privilege to be part of GLXP’s exclusive group of teams, we are excited by the possibilities and eagerly look forward to putting up a good show!

They’re aiming for a launch by 2013-14 which is roughly the timeline that Chandrayaan-II is looking at for its launch! Chandrayaan-II, mind you has been in the works with help from Russia from 2009.

It is a challenge and one that possibly can be tackled. I’ll be following the team closely through their twitter account. I believe that even if they do not launch in the timeline they have set they must work towards launching because of the novelty of such a concept in India!